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We study the spin dynamics of two-dimensional electron gases with Rashba spin-orbit coupling by taking
account of electron-electron interactions. The diffusion equations for charge and spin densities are derived by
making use of the path-integral approach and the quasiclassical Green’s function. Analyzing the effect of the
interactions, we show that the spin-relaxation time can be enhanced by the electron-electron interaction in the
ballistic regime.
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I. INTRODUCTION

Spin-based electronics1 or spintronics2 has been an active
research area in the past decade. The effort for effectively
manipulating electron spin by means of an applied electric
field3–5 is an important issue there. The system with spin-
orbit �SO� couplings makes those efforts possible and thus
brings great interest from both academic and practical as-
pects recently. Thus, it is essential to study the spin relax-
ation for further development of spintronics.

There are four main mechanisms of spin relaxation in
semiconductor systems.2,6–10 In the Elliott-Yafet mechanism,
the spin-orbit coupling induces a mixing of wave functions
for valence-band and conduction-band states. The mixing
that results in the spin relaxation of electrons is due to the
scattering by impurities or phonons. The Elliott-Yafet mecha-
nism operates in semiconductors with and without a center of
inversion symmetry, while it is most prominent in the cen-
trosymmetric ones �such as silicon�. The Bir-Aronov-Pikus
mechanism is applicable for p-doped semiconductors in
which the electron-spin flipping is induced by exchange in-
teraction with holes. The hyperfine interaction provides an-
other important mechanism11 for ensemble spin dephasing
and single spin decoherence of localized electrons. The
D’yakonov-Perel mechanism depicts that electrons can feel
an effective random magnetic field arising from the spin-
orbit coupling in systems with inversion asymmetry such
that spin relaxation occurs. This mechanics can interpret the
spin dephasing in crystals without inversion center and is
particularly applicable for n-type samples. For two-
dimensional n-type semiconductor systems without inversion
symmetry, the D’yakonov-Perel mechanism is believed to be
most important in wide ranges of carrier temperature and
concentration. Under certain conditions, the Elliott-Yafet
mechanism may affect spin dynamics of two-dimensional
electrons in these systems. The Bir-Aronov-Pikus mecha-
nism is important for p-type semiconductor systems and the
hyperfine-interaction mechanism dominates for localized
electrons.

Most studies of spin relaxation in semiconductors have
focused on impurity�somewhat less phonon�-mediated spin
flips while neglecting the effect of electron-electron interac-
tions for a long time. It has been noticed recently that

electron-electron interactions play certain role in spin relax-
ation and dephasing in semiconductor systems. The electron-
electron interaction is known to play a crucial role in deter-
mining the transport and thermodynamic properties near the
metal-insulator transition in two-dimensional electron
systems,12 which is suspected to affect the spin relaxation for
the spin susceptibility behaving critically when the metal-
insulator transition occur.13–15 There are several experimental
and theoretical studies on the effect of electron-electron in-
teractions on spin relaxation. The electron-electron scattering
results in additional momentum relaxation which induces
spin dephasing of electrons through the motional narrowing
of the D’yakonov-Perel type16 as measured in
n-GaAs /AlGaAs quantum wells.17,18 The electron-electron
scattering effect on the spin dephasing has been considered19

in a magnetic field, and a momentum-dependent effective
random magnetic field induced by the electron-electron ex-
change interaction can lead to spin dephasing of
electrons.20–22 It is also observed that the spin relaxation
caused by the D’yakonov-Perel mechanism gives consider-
ably different rates depending on the technique employed.23

However, as we are aware, the explicit form of the diffu-
sion equation for two-dimensional electron gases �2DEGs�
with spin-orbit couplings has not been derived by taking ac-
count of electron-electron interactions. It is thus obligatory to
develop the explicit form of the diffusion equation to study
the spin dynamics for 2DEGs with spin-orbit couplings as
well as electron-electron interactions. In this paper, we focus
our attention on the D’yakonov-Perel spin-relaxation mecha-
nism. We investigate the spin dynamics of electrons in two-
dimensional n-type semiconductor systems with electron-
electron interactions and Rashba spin-orbit coupling.

The paper is organized as follows. In Sec. II, we take
account of the electron-electron interaction for the 2DEGs
with the Rashba spin-orbit coupling. Applying the path-
integral formulation, we decouple the interaction in terms of
an auxiliary Bose field. In Sec. III, we employ the quasiclas-
sical Green’s function to investigate the spin dynamics of
electrons. In Sec. IV, the diffusion equations for spin and
charge densities as well as the explicit expression of spin-
relaxation time are derived. A summary is given in Sec. V
and some complicated formulae are given in the Appendix.

PHYSICAL REVIEW B 78, 195325 �2008�

1098-0121/2008/78�19�/195325�11� ©2008 The American Physical Society195325-1

http://dx.doi.org/10.1103/PhysRevB.78.195325


II. AUXILIARY FIELDS DESCRIBING THE ELECTRON-
ELECTRON INTERACTION

Taking the electron-electron interaction into account, we
study the spin dynamics of electrons in two-dimensional sys-
tems with structure inversion asymmetry. As the Fourier
transform of the Coulomb repulsion between electrons reads
V�q�=2�e2 / �q�, the Hamiltonian of such a system is given
by

Ĥ =� ��
�,��

�̂�†�r���−
�2

2m
�2 + U�r� − �	��,��

+ b · �� ���
�̂���r��d2r +
1

A
�
q�0

�e2

�q�
�̂�q��̂�− q� , �1�

where �̂�†�r� and �̂��r� represent the field operators with �
= ↑ ,↓ labeling the spin state of the electron, �̂�q� represents
the Fourier transform of the density operator �̂�r�
=���̂�†�r��̂��r�, and �� = ��x ,�y ,�z� represents the Pauli ma-
trices in spin space, U�r� represents a random disorder po-
tential, and � represents the chemical potential. The other
notions in Eq. �1� are A=L2 with L referring to the size of the
sample and b=	p
ez with 	 referring to the Rashba spin-
orbit coupling strength. In holonomy representation �or the
so-called coherent-state representation�, the Green’s function
can be expressed as a functional integral over the Grassmann

fields �� and �̄� that reflect the fermionic nature of electrons,

G����r,t;r�,t�� = ����r,t��̄���r�,t��

=
� D�̄D����r,t��̄���r�,t��e−iS��,�̄�

� D�D�̄e−iS��,�̄�

. �2�

Here we adopted the unit �=1 and the simplified notation

D�=D�↑D�↓. The action S�� , �̄� in the above equation is
given by

S��,�̄� =� dt�� d2r�
���

�̄��r,t�W����
���r,t�

+
1

A
�
q�0

�e2

�q�
���q,t���− q,t��� , �3�

where W���= �−i� /�t−�r
2 /2m+U�r�−������+b ·�� ���.

We divide the fermionic field ���r , t� into two compo-
nents �1

��r , t� and �2
��r , t� which reside, respectively, on the

upper and lower branches of the Keldysh time contour
shown in Fig. 1. Hence, the second line of Eq. �3�, which

refers to the interaction part, can be written as Sint��1 , �̄1�
−Sint��2 , �̄2� with

Sint��i,�̄i� =� dt �
q�0

�e2

A�q�
��i�q,t��i�− q,t�� ,

where i=1,2. With the help of two auxiliary bosonic fields
�̃i�r , t�, we can decouple those two terms relevant to

electron-electron interactions via the Hubbard-Stratonovich
transformation,24 namely,

exp�− i� dt �
q�0

�e2

A�q�
�i�q,t��i�− q,t�


=� D�̃i�q,t�exp�i� dt �
q�0

�q�
4�
�̃i�q,t��̃i�− q,t�



 exp�i� dt
e

2�A
�
q�0

��̃i�q,t��i�− q,t�

+ �i�q,t��̃i�− q,t��
 .

Then we can write the Green’s function as follows:

Ĝ����r,t;r�,t�� =
� D�̄D�D���r,t��̄���r�,t��e−iS��,�̄,�

� D�D�̄De−iS��,�̄,�

,

�4�

where the action in real space is given by

S��,�̄,� =� dtd2r��
���

�̄��r,t�


�W����3 − e�̃i�̃i������
���r,t��

+� dt� d2rd2r��T�r,t�
− e2

2


V0
−1�r − r���3�r�,t�� , �5�

in which the Pauli matrix �3=diag�1,−1� is defined on the
Keldysh space, and V0

−1 is defined via the following relation:

� d2r1V0�r − r1�V0
−1�r1 − r�� = ��r − r�� .

The other notions appeared in Eq. �5� are fermionic doublet
�, bosonic doublet , and vertex matrices �̃i. They are de-
fined as

�� = ��1
�

�2
�	,  = ��̃1

�̃2

	 ,

FIG. 1. The Keldysh contour.
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�̃1 = �1 0

0 0
	, �̃2 = �0 0

0 − 1
	 .

For calculation convenience, one can introduce a partition
function for the coupling between the fermionic and bosonic
doublets,

Z�� = �TCe−iSR�,���,

SR�,�� =� dtd2r��
�

�̄��− e�̃i�̃i���� ,

where TC stands for time ordering along the contour C and
�¯� means functional integration over � field with the
action

S��� =� dtd2r��
���

W����̄
��r,t��3�

���r,t�� .

Then the Green’s function in Eq. �4� can be formally ex-
pressed as a functional integration over the bosonic fields,

Ĝ����r,t;r�,t�� = N� DĜ����r,t;r�,t���exp�− iSe��� ,

�6�

where the normalization coefficient is denoted by N and the
action Se�� is defined by

Se�� = i ln Z�� +� dtd2rd2r�


 �T�r,t�
− e2

2
V0

−1�r − r���3�r�,t�� , �7�

and the kernel Ĝ�r , t ;r� , t� �� is given by

Ĝ����r,t;r�,t��� =
1

Z��
�TC�

��r,t��̄���r�,t��e−iSR�,���.

�8�

We can average the Green’s function Ĝ����r , t ;r� , t�� over
disorder as follows:25

�Ĝ����r,t;r�,t��dis = N� D�Ĝ����r,t;r�,t���dis


 exp�− i�Se��dis� , �9�

where �¯dis refers to the average over disorder. The random
disorder potential U�r� is assumed to be characterized by a
correlation function,

�U�r�U�r��dis =
1

2���
��r − r�� ,

where �=m /��2 stands for the density of states. The average
of the Green’s function over disorder introduces the elastic-
scattering time � which is relevant to the random disorder.
We neglect correlations between the mesoscopic fluctuations
of �Se��dis and the fermionic operators in Eq. �8� so that

the average of the Green’s function Ĝ����r , t ;r� , t� �� can

be separated from the bosonic action Se��. This approxima-
tion is valid since the mesoscopic fluctuation is smaller than
average quantities.

After averaging over disorder, we rotate the Keldysh

bases Ĝ→L�3ĜL† through a unitary matrix L,

L =
1
�2

�1 − 1

1 1
	 ,

so that the Green’s function takes the following shape:

Ĝ�r,t;r�,t��� = �GR�r,t;r�,t��� GK�r,t;r�,t���
GZ�r,t;r�,t��� GA�r,t;r�,t���

	 .

�10�

Note that the Green’s function Ĝ�r , t ;r� , t� �� is a 2
2
matrix defined in the Keldysh space, of which the matrix
entities are again 2
2 matrices defined in spin space.

The bosonic fields after rotation take the following two
components �1= e

2 ��̃1+ �̃2� and �2= e
2 ��̃1− �̃2� that reside on

the upper and lower branches of the contour C, respectively.
Then the corresponding vertex matrices turn to �1�2�
=L��̃1��̃2��3L†, namely,

�1 = �1 0

0 1
	, �2 = �0 1

1 0
	 ,

and the interaction term �̄��−e�̃i�̃i��� becomes

−�̄��
�1 �2

�2 �1
���. As �1 and �2 constitute a representation of Z2

group, the interaction can be regarded as the coupling be-
tween Fermi field and Z2 Bose field.

These Bose fields define the following propagators:

DK�r1,r2;t1,t2� = − 2i��1�r1,t1��1�r2,t2� ,

DR�r1,r2;t1,t2� = − 2i��1�r1,t1��2�r2,t2� ,

DA�r1,r2;t1,t2� = − 2i��2�r1,t1��1�r2,t2� ,

��2�r1,t1��2�r2,t2� = 0. �11�

One can show that those propagators obey the Dyson equa-
tions in the saddle-point approximation, namely,

D̂�x1,x2� = D̂0 +� dx3dx4D̂0�x1,x3��̂�x3,x4�D̂�x4,x2� ,

�12�

with notations x��r , t�, D0
R�q�=D0

A�q�=−2�e2 / �q�, and
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D̂ = �DR DK

0 DA 	, D̂0 = �D0
R 0

0 D0
A 	, �̂ = ��R �K

0 �A 	 ,

�R�x1,x2� =�A�x2,x1� =
� Trs GK�r1;t1,t1��

− 2i��1�r2,t2�
,

�K�x1,x2� =
� Trs�GK�r1;t1,t1�� + GZ�r1;t1,t1���

− 2i��2�r2,t2�
,

�13�

where Trs stands for the trace in the spin space.

III. KINETIC EQUATION

In Sec. II, the electron-electron interaction has been de-
coupled with the help of auxiliary bosonic fields �1�2�. This
means that the influence of the interaction can be described
by a Z2 Bose field,

�̂�r,t� = ��1�r,t� �2�r,t�
�2�r,t� �1�r,t�

	 .

Now we are able to apply the quasiclassical Green’s
function26–28 approach to study the spin dynamics. We derive
the Eilenberger equation from the right-hand and left-hand
Dyson equations obeyed by the Green’s function

Ĝ�r , t ;r� , t� �� in Eq. �10�,

�̃ tĝ + vF · �� ĝ + i�b · �� , ĝ� =
ĝ�ĝn − �ĝnĝ

2�
, �14�

where vF denotes the Fermi velocity, � is the elastic-
scattering time arising from the adoption of the standard self-
consistent Born approximation; �¯n means taking average
over the direction of the electron momentum n=p / �p�
��cos � , sin ��, and the covariant derivative is defined by

�̃ tĝ = �t1
ĝ + �t2

ĝ + i�̂�r,t1�ĝ − iĝ�̂�r,t2� . �15�

The quasiclassical Green’s function in Keldysh and spin
spaces,

ĝ = �gR gK

gZ gA 	 , �16�

can be derived by integrating the Fourier transform of the
Green’s function in Eq. �10� over energy variables, i.e.,

ĝ�t1,t2;n,r� =
i

�
� d�Ĝ�t1,t2;p,r� ,

Ĝ�t1,t2;p,r� =� d2r�eip·r�Ĝ�r1,t1;r2,t2�� , �17�

where �=p2 /2m−�, r�=r1−r2, and r= �r1+r2� /2. The elec-
tron polarization operators can be obtained in terms of Eqs.
�13� and �17�, i.e.,

�R�x1,x2� =�A�x2,x1� = �� d�

2�
���x1 − x2�

+
�� Trs gK�t1,t1;n,r1�

2��1�r2,t2� 
 ,

�K�x1,x2� = ��� d�

2�

� Trs�gK�t1,t1;n,r1� + gZ�t1,t1;n,r1��
2��2�r2,t2�

.

�18�

Since physical observables are determined by the Keldysh
component of the quasiclassical Green’s function, namely,
�gK�t1 , t2 ;n ,r� �here the subscript  refers that the func-
tional average29 is taken over the field �, we need to solve
this component from the Eilenberger equation. Decomposing
the Green’s function in charge and spin components
�gK�t1 , t2 ;n ,r�=g0

K+gK ·�� , one can obtain the charge and
spin densities, respectively,

��r,t� = −
1

4
e�� d��g0

K�t,�;n,r�n,

S�r,t� = −
1

4
�� d��gK�t,�;n,r�n. �19�

Now we turn to the kinetic equations for the two indepen-
dent components gK and gZ. For �gZ=0 in all orders of the
perturbation theory, we have

gK = �gK + �gK, gZ = �gZ,

where the fluctuation parts �g imply the effects contributed
by the auxiliary bosonic fields. One can obtain from Eq. �14�
that �gZ obeys the following equation:

��̃ t + vF · �� ��gZ + i�b · �� ,�gZ� −
1

�
��gZ − ��gZn�

= − 2i�2�r,t1���t1 − t2�Is, �20�

where Is denotes the unit matrix in spin space, and we rede-
fine the covariant derivative to be �̃t=�t1+�t2. When deriving
the above equation, we have used the conditions gR

=��t1− t2�Is−gK�gZ /2 and gA=−��t1− t2�Is+�gZgK /2. Equa-
tion �20� gives rise to

�gZ�t1,t2;n,r� = 2i��t1 − t2�� dr1dt3� d��

2�


 �2�r1,t3����t3 − t1,n�,n;r1,r� ,
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���t,n�,n;r1,r2� =� d�d2q

�2��3 eiq·�r1−r2�−i�t���n�,n;�,q� ,

�21�

where the diffusion propagator �� is defined by

�− i� + ivFn · q����n,n�;�,q� +
1

�
����n,n�;�,q�

− ����n,n�;�,q�n� = 2���n − n�� . �22�

After obtaining the explicit form of �gZ, we can further solve
the �gK from the following relation:

��̃ t + vF · �� ��gK + i�b · �� ,�gK� +
1

�
��gK − ��gKn�

= 2i�2�r,t1���t1 − t2�Is − i��1�r,t1� − �1�r,t2���gK

+
1

4�
��gK��gZ�gKn − ��gKn�g

Z�gK

− �gK�gZ��gKn + ��gK�gZn�gK� . �23�

We take only the zeroth and first angular harmonics into
account in the Keldysh component assumed spatial smooth-
ness,

�gK�t1,t2;n,r� � �gK�t1,t2;n�,r�,n�

+ 2n · �n�gK�t1,t2;n�,r�,n�. �24�

Decomposing the fluctuating term in charge and spin
components �gK=�g0

K+�gK ·�� , one can easily obtain the ex-
plicit expression of the �g0

K which is given in Eq. �A1�. The
fluctuation part �gK related to the spin components fulfils the
following equation,

��̃ t + vF · �� ��gK − 2b
 �gK +
1

�
��gK − ��gKn�

= − i��1�r,t1� − �1�r,t2����gK�t1,t2;n,r�,n

+ 2n · �n�gK�t1,t2;n�,r�,n�� +
1

2�
��g0

K,n���gZn

− �gZ��gK,n + �gK,n���gZn − �gZ��g0
K,n� . �25�

If denoting

Q = ��gx
K

�gy
K

�gz
K�, Lk = �gx

K

gy
K

gz
K� ,

we can write Eq. �25� in the following matrix equation:

��̃ t + vF · �� �Q − 2�Q +
1

�
�Q − �Qn�

= − i��1�r,t1� − �1�r,t2����Lk,n + 2n · �n�Lk,n��

+
1

2�
��g0

K,n���gZn − �gZ��Lk,n + �Lk,n���gZn

− �gZ��g0
K,n� , �26�

where the matrix � is given by

� = � 0 0 − 	pF cos �

0 0 − 	pF sin �

	pF cos � 	pF sin � 0
� .

Then Eq. �26� can be solved by utilizing the following ex-
pression:

�− i� + ivFn · q − 2���s�n,n�;�,q� +
1

�
��s�n,n�;�,q�

− ��s�n,n�;�,q�n� = 2���n − n�� . �27�

We give the explicit expression of �gK in Eq. �A2� in Appen-
dix A.

Since the concrete forms of �gZ and �gK have been ob-
tained, we can write down the kinetic equation satisfied by
the Keldysh function through averaging the K component of
Eq. �14� over the auxiliary bosonic fields,

��̃ t + vF · �� ��gK + i�b · �� ,�gK� = Cel��gK� + Cin��gK� ,

�28�

where the inelastic collision integral reads

Cin��gK��t1,t2;n,r� = − i���1�r,t1� − �1�r,t2���gK,

�29�

and the elastic collision integral is given by

Cel��gK��t1,t2;n,r� =
1

�
���gK�t1,t2;n,r�n − �gK�t1,t2;n,r�� +� dt3

d�1

2�
��gK�t1,t3;n1,r��A�t3,t2;n1,n;r�

− �gK�t1,t3;n,r��A�t3,t2;n,n1;r�� +� dt3
d�1

2�
��R�t1,t3;n,n1;r��gK�t3,t2;n1,r�

− �R�t1,t3;n1,n;r��gK�t3,t2;n,r�� , �30�
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where

�A�t1,t2;n,n1;r� =
1

4�
� dt3���gZ�t1,t3;n1,r�

− �gZ�t1,t3;n,r���gK�t3,t2;n,r�,

�R�t1,t2;n,n1;r� =
1

4�
� dt3��gK�t1,t3;n,r���gZ�t3,t2;n1,r�

− �gZ�t3,t2;n,r��. �31�

Substituting the explicit forms of �gZ and �gK given in Eqs.
�21�, �A1�, and �A2� into Eq. �28�, one gets the kinetic equa-
tion which can be used to study the influence of electron-
electron interactions on the spin dynamics of 2DEGs with
Rashba spin-orbit coupling. After some tedious calculation,
we obtain the explicit expressions of the inelastic and elastic
collision integrals, respectively, which are given in Eqs. �A3�
and �A6� in Appendix A.

IV. SPIN DYNAMICS

After taking the average over the direction of the momen-
tum n, one can see from Eqs. �29� and �30� that the elastic
collision integral vanishes,

� d�

2�
Cel��gK��t,�;n,r� = 0, �32�

but the average of the inelastic collision integral over the
direction does not vanish. This means that the elastic colli-
sion integral preserves the number of electrons on a given
energy shell defined by Eq. �A5�, while the inelastic collision
integral does not preserve it. When t1= t2, Eq. �A4� gives rise
to

� d�Cin��gK��t1,�;n,r� = Cin��gK��t1,t1;n,r� .

One can see from Eq. �29� that the right-hand side is always
zero. Thus we obtain

� d�Cin��gK��t,�;n,r� = 0. �33�

This implies that not only the total number of electrons is
conserved but also the number of electrons moving along a
concrete direction n is conserved.

In decomposing the Green’s function in charge and spin
components in the approximation of Eq. �24�, separating the
zeroth and first angular harmonics, and utilizing Eqs. �32�
and �33�, we obtain from Eq. �28� that

vFn · �� �gK�t,�;n,r�,n + i�b · �� ,�gK�t,�;n,r�,n�

= Cel��gK��t,�;n,r� , �34�

�t�gK�t,�;n,r�,n + i�b · �� ,2n · �n�gK�t,�;n�,r�,n��

+ vFn · �� �2n · �n�gK�t,�;n�,r�,n�� = 0. �35�

There is no contribution of the inelastic collision integral to

the spin dynamics due to the condition �33�. Solving Eq. �34�
and substituting �n�gK�t ,� ;n� ,r�,n� into Eq. �35�, we can
obtain the spin- and charge-diffusion equations. The diffu-
sion equation for the charge density reads

�t� − CD�X
2 � = 0, �36�

where �X= ��x ,�y� and CD=vF
2� /2. We introduce the distribu-

tion function f which reduces to the Fermi distribution in
equilibrium,

f = f0 + �� · fk =
1

2
�1 −

1

2
gK	 . �37�

In the time �, the charge density becomes isotropic but the
spin-relaxation process does not start yet, hence30

g0
K��� = 2�1 − 2f0���� ,

gK�t,�;r� = − 4fk�t,�;r� , �38�

where

f0��� = �f+��� + f−����/2,

fk�t,�;r� = �f+��� − f−����s�t,r� ,

f���� = �exp� � � ��/2
kBT

	 + 1
−1

, �39�

where s= �sx ,sy ,sz� denotes the unit vector along the spin,
f���� represents the distribution functions projected along
the direction parallel or antiparallel to the unit vector s �all
the energies are counted from the Fermi energy�, and ��
= ��+−�−� refers to the difference between the chemical po-
tentials �� of the electron-spin subsystems. The diffusion
equations for the spin components are given by

�tSx − CD�X
2 Sx − 2CE�xSz +

1

�s�
Sx =

1

�xx
e Sx + Fx�Sx,Sy,Sz� ,

�tSy − CD�X
2 Sy − 2CE�ySz +

1

�s�
Sy =

1

�yy
e Sy + Fy�Sx,Sy,Sz� ,

�tSz − CD�X
2 Sz + 2CE�xSx + 2CE�ySy +

2

�s�
Sz

=
1

�zz
e Sz + Fz�Sx,Sy,Sz� , �40�

where CE=	vFpF�, �s�=1 / �2�	pF�2�� and F��Sx ,Sy ,Sz� is a
quadratic form of �Sx ,Sy ,Sz� lacking of the S�

2��=x ,y ,z�
term. The characteristic times ���

e describe the effect of the
electron-electron interaction on the spin relaxation and their
explicit expressions are given by

YUAN LI AND YOU-QUAN LI PHYSICAL REVIEW B 78, 195325 �2008�

195325-6



1

�xx
e =

2�	pF�2�

M
�� d�� d�

2�
��f+�� − �� − f−�� − ���


 Im�R2
xx�g0

K��� + �f+��� − f−����R1
xxg0

K�� − ���� ,

1

�yy
e =

2�	pF�2�

M
�� d�� d�

2�
��f+�� − �� − f−�� − ���


 Im�R2
yy�g0

K��� + �f+��� − f−����R1
yyg0

K�� − ���� ,

1

�zz
e =

1

�xx
e +

1

�yy
e

=
2�	pF�2�

M
�� d�� d�

2�
��f+�� − �� − f−�� − ���


 �Im�R2
xx� + Im�R2

yy��g0
K��� + �f+��� − f−����


�R1
xx + R1

yy�g0
K�� − ���� , �41�

where M =�d��f+���− f−����. In order to obtain the concrete
expressions of the characteristic times ���

e , we first take the
energy integration in Eq. �41�. Since the spin splitting is
small, i.e.,

��+ − �−�� ��+�, ��−� ,

the energy integration can be taken as follows:

1

M
�

−�

�

d��f+�� − �� − f−�� − ����f+��� + f−����

�

2�
−�

�

d�
� f0�� − ��

��
f0���

�
−�

�

d�
� f0���

��

= 1 −
�

��
�� coth

�

2kBT
	 .

�42�

After the energy integration, the characteristic times ���
e have

the forms

1

�xx
e =

1

�yy
e = 8�	pF�2��

0

� d�

2�
� �

��
�� coth

�

2kBT
	



 �Im�R2
xx� − R1

xx� . �43�

The detail of the calculations of the kernels R1
ıj and Im R2

ıj are
given in Appendix B. Now we discuss the influence of the
electron-electron interaction on the spin-relaxation time in
the ballistic regime T��1.

We can obtain the characteristic time �xx
e in the ballistic

regime utilizing the kernels R1
ıj and Im R2

ıj in Eq. �B7�,

1

�xx
e �T� � 1� = 8�	pF�2��

0

� d�

2�
� �

��
�� coth

�

2kBT
	



 � − 1

4��vF
2 �3�

2
+ tan−1 �� −

2��

1 + �2�2	

�

− 4�	pF�2�

�vF
2 �

0

� d�

2�
� �

��
�� coth

�

2kBT
	


=
2�	pF�2�

��vF
2 �2kBT − EF coth

EF

2kBT
	 , �44�

where tan−1���� is replaced by � /2 for ���1 in the ballistic
regime and EF is in the place of the upper limit of the inte-
gral. In the low-temperature regime kBT�EF, the second
term approaches a constant independent of the temperature,
so the first term manifests the temperature effect in the con-
tribution of the electron-electron interaction to the spin-
relaxation time.

When the total spin density S is spatially homogeneous
and parallel to the �th axis of the coordinate frame, the con-
tribution of F��Sx ,Sy ,Sz� vanishes, namely, F��Sx ,Sy ,Sz�=0.
The diffusion equations for spin components S� can be sim-
plified, for example,

�tSx = −
1

�s�
Sx +

1

�xx
e Sx = −

1

�xx
s Sx, �45�

where �xx
s =�s� / �1− �s� / �xx

e �. Therefore, the spin-relaxation
times can be determined by �s� and ���

e , consequently,

�xx
s =

�s�

1 −
�s�

�xx
e

, �yy
s =

�s�

1 −
�s�

�yy
e

,

��zz
s �−1 = ��xx

s �−1 + ��yy
s �−1. �46�

We can see that the total spin decays exponentially when 0
 �s� /���

e  1. In terms of the explicit forms of the character-
istic times ���

e in the ballistic regime, the spin-relaxation
times involving the effect of the electron-electron interaction
take the following forms:

�xx
s = �yy

s = 2�zz
s =

�s�

1 − � T

TF
−

1

2
	 , T� � 1, �47�

where TF=EF /kB is the Fermi temperature. It is worthwhile
to indicate that there exists an obvious enhancement of the
spin-relaxation time with increment of the temperature in the
ballistic regime. The increasing amplitude of the spin-
relaxation time depends on the ratio of the temperature to the
Fermi temperature. In conclusion, an obvious enhancement
of the spin-relaxation time can be induced by the electron-
electron interaction in the ballistic regime for systems under
consideration.

V. SUMMARY

In the above, we presented a theoretical study of the in-
fluence of electron-electron interactions on the spin dynam-
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ics for 2DEGs with Rashba spin-orbit coupling. We em-
ployed the path-integral approach and the quasiclassical
Green’s function to deal with the electron-electron interac-
tion. With the help of the auxiliary Bose field, the electron-
electron interaction was decoupled via the Hubbard-
Stratonovich transformation. Then one is able to derive the
Eilenberger equation by using the Green’s function after the
transformation. Through tedious calculation, we further de-
rived the spin- and charge-diffusion equations from which
the spin-relaxation time can be given explicitly. We analyzed
the influence of the electron-electron interaction on the spin-
relaxation time in the ballistic regime and found an obvious
enhancement of the spin-relaxation time with the increment
of the temperature T. The increasing amplitude of the spin-
relaxation time depends on the ratio of the temperature to the
Fermi temperature. The electron-electron interaction changes
the wave vector k and hence results in the variation of the
spin precession vector. This exhibits that the electron-

electron interaction plays an important role in the spin relax-
ation of electrons when the D’yakonov-Perel spin-relaxation
mechanism dominates. It is expected to be helpful in under-
standing the spin dynamics of 2DEGs with spin-orbit cou-
plings and electron-electron interactions. Our formulation
can also extend to the case of bulk inversion asymmetry,
namely, the additional Dresselhaus term31 with b=!�px ,
−py�+��pxpy

2− pypx
2�.
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APPENDIX A: EXPLICIT FORMS

The explicit form of �g0
K is

�g0
K�t1,t2;n,r� = − i� dt� d2r1��1�r1,t1 − t�� − �1�r1,t2 − t���� d��

2�
���t�,n,n�;r,r1�
 ��g0

K�t1 − t�,t2 − t�;n1,r�,n1

+ 2n� · �n1g0
K�t1 − t�,t2 − t�;n1,r�,n1

� +� d��

2�

d��

2�
� d2r1dt����t�,n,n�;r,r1��2i�2�r1,t1 − t����t1 − t2�

+
i

�
�����t4 − t3,n�,n1;r2,r1�n1

− ���t4 − t3,n�,n;r2,r1���2�r2,t4�
 ��g0
K�t1 − t�,t3;n1,r�,n1


�g0
K�t3,t2 − t�;n1,r�,n1

+ �gK�t1 − t�,t3;n1,r�,n1
· �gK�t3,t2 − t�;n1,r�,n1

�� . �A1�

The explicit expression of �gK is

Q�t1,t2;n,r� = − i� dt� d2r1��1�r1,t1 − t�� − �1�r1,t2 − t���� d��

2�
�s�t�,n,n�;r,r1�
 ��Lk�t1 − t�,t2 − t�;n1,r�,n1

+ 2n� · �n1Lk�t1 − t�,t2 − t�;n1,r�,n1
� +

2i

�
� d��

2�

d��

2�
� d2r1dt��s�t�,n,n�;r,r1��g0

K�t1 − t�,t3;n1,r�,n1


 ������t4 − t3,n�,n1;r2,r1�n1
− ���t4 − t3,n�,n1;r2,r1��
�2�r4,t2��Lk�t3,t2 − t�;n1,r�,n1

� . �A2�

The inelastic collision integral reads

Cin��gK��t,�;n,r� =
i

2�
� d2r1d2r2� d�

2�
�DR��;r,r2� − DA��;r2,r��
 ������;r2,r1�����− �;r,r1�

− ����− �;r,r1�����;r2,r1����g0
K�t,� − �;n,r�,n�g0

K�t,�;n,r�,n

+ �gK�t,� − �;n,r�,n · �gK�t,�;n,r�,n� +
i

�
� d2r1d2r2� d�

2�
�DR��;r,r2� − DA��;r2,r���m


 ���s�− �;r2,r1�����− �;r,r1� − ��s�− �;r,r1�����;r2,r1���g0
K�t,� − �;n,r�,n�Lk�t,�;n,r�,n,

�A3�

where

Cin��gK��t1,t2;n,r� =� d�

2�
Cin��gK�� t1 + t2

2
,�;n,r	ei��t2−t1�, �A4�

and ����s� means angular averaging defined in Eq. �A10�, the matrix �m= ��x ,�y ,�z� and the temporal transformation of the
Green’s function have been used due to a much faster dependence on the difference t1− t2 than on the t1+ t2,
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gK�t1,t2;n,r� =� d�

2�
gK� t1 + t2

2
,�;n,r	ei��t2−t1�, �A5�

the propagators of auxiliary fields have the same transformation. The elastic collision integral can be written as

Cel��gK��t,�;n,r� = −
2

�
nı�nıg

K�t,�;n,r�,n −
2

�
� d�

2�
nıR1

ıj����g0
K�t,� − �;n,r�,n
 �njg

K�t,�;n,r�,n +
i

�
� d�

2�
nıR2

ıj���


�njg
K�t,� − �;n,r�,n�gK�t,�;n,r�,n −

i

�
� d�

2�
nı�R2

ıj������gK�t,�;n,r�,n�njg
K�t,� − �;n,r�,n

+
i

�
� d�

2�
nı��mR3

ıj����Lk�t,� − �;n,r�,n�njg
K�t,�;n,r�,n − �njg

K�t,�;n,r�,n�m�R3
ıj�����


�Lk�t,� − �;n,r�,n� , �A6�

where nı�j� refers to the ı�j� component of the unit vector n,
with ı ,j=x ,y and the kernels R1

ıj���−R3
ıj��� in Eq. �A6� are

defined by

R1
ıj��� = Im� d2q

�2��2DR��;q������n,�;q�nj�nı��

−
1

2
�ı,j������� − ������� , �A7�

R2
ıj��� =� d2q

�2��2DR��;q������nı��nj − ���nı��nj

− ���nı���nj� , �A8�

R3
ıj��� =� d2q

�2��2DR��;q�����nj�nı�s −
1

2
�ı,j������s

− ����s�� , �A9�

where we have introduced the notation

�f���s�h =� d�d��

�2��2 f�n����s��n,n�;�,q�h�n�� .

�A10�

APPENDIX B: CALCULATION OF THE KERNELS Ri
ıj

According to the definition of the diffusion propagator ��
in Eq. �22�, we can obtain

���n,n�;�,q� = 2���n − n����0�n;�,q�

+ ��0�n;�,q���0�n�;�,q�
1

� −
1

"

,

�B1�

where

��0�n;�,q� =
1

− i� + ivFn · q +
1

�

=
1

− i� + ivFq cos�� − �q� +
1

�

,

" =��− i� +
1

�
	2

+ vF
2q2, �B2�

with �q being the angle between the wave vector q and the x
axis. In terms of the explicit form of the diffusion propagator,
one can obtain

��� =
�

"� − 1
,

���nx = �nx�� =
�

ivFq�"� − 1�
�" + i� −

1

�
	cos �q,

���ny = �ny�� =
�

ivFq�"� − 1�
�" + i� −

1

�
	sin �q,

����� =

− i� +
1

�

"�" −
1

�
	2 ,

���nx�� =
1

"
sin2 �q −

"

vF
2q2�"� − 1�


�1 −

− i� +
1

�

"
�

2

cos2 �q,
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���ny�� =
1

"
cos2 �q −

"

vF
2q2�"� − 1�


�1 −

− i� +
1

�

"
�

2

sin2 �q,

���nx��nx =
�

"� − 1


�− i� +
1

�

"2 sin2 �q −

" − �i� +
1

�
	

"2�"� − 1�
cos2 �q� ,

���ny��ny =
�

"� − 1


�− i� +
1

�

"2 cos2 �q −

" − �i� +
1

�
	

"2�"� − 1�
sin2 �q� .

�B3�

Utilizing the above formulas, we find that the kernels R1
ıj���

and R2
ıj��� are diagonal, Ri

ıj=�ıjRi, which can be written as

R1��� = − Im�
0

� qdq

4�
DR��;q�� 1

vF
2q2�" + i� −

1

�

" −
1

�
�

2

+

" + i� −
1

�

"�" −
1

�
	2� ,

Im R2��� = Im�
0

� qdq

4�
DR��;q�� 1

vF
2q2

�" + i� −
1

�

2

"�" −
1

�
	

+

" + i� −
1

�

"�" −
1

�
	2� . �B4�

It is not difficult to calculate the concrete forms of the
electron polarization operators from Eq. �18�, for example,

�R��,q� = ��1 +
i�

" −
1

�
� . �B5�

Substituting the polarization operator into Eq. �12�, we ob-
tain the propagator of the Bose fields, i.e.,

DR��,q� =
D0

R

1 − D0
R�R =

− 2�e2/q

1 +
2�e2

q
��1 +

i�

" −
1

�
�

� −
1

�R

= −
1

�

" −
1

�

" −
1

�
+ i�

, �B6�

where the approximation in the second line corresponds to
the unitary limit associating with larger distances than the
screening radius.

We obtain the concrete expressions of the kernels R1 and
R2 in the ballistic regime T��1,

R1�T� � 1� #
1

8��vF
2 �3�

2
+ tan−1 �� −

2��

1 + �2�2	 ,

Im R2�T� � 1� # −
1

8��vF
2 �3�

2
+ tan−1 �� −

2��

1 + �2�2	 .

�B7�
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